

Gayatri Vidya Parishad College of Engineering for Women (Autonomous) (Affiliated to Andhra University, Visakhapatnam) Madhurawada, Visakhapatnam

B.Tech. - I Semester Regular Examinations, December / January – 2025

Network Theory and Machines –(24EE11RC02)

Q No Question Source transformation technique explanation ----- (2M) Source transformation technique explanation using an example ----- (1M) 1(a) Explanation of Star to Delta transformation (formulas only) ------(2M) Explanation of Star to Delta transformation using an example -----(2M) Obtaining equations by using suitable method (like mesh/nodal analysis/reduction technique etc.) -----(2M) Finding the responses: 1 (b) $i_1 = 3A, i_2 = 2A, i_3 = 1A$ -----(3M) $v_1 = 24$ V, $v_2 = 6$ V, $v_3 = 6$ V -----(2M) Explanation of nodal analysis -----(3M) 2(a) Steps for applying nodal analysis -----(4M) Formation of three mesh equations Representation of current directions and voltage polarities of every element in the circuit diagram -----(1M) $18I_1 + 5I_2 + 3I_3 = 50$ -----(1M) $5I_1 + 9I_2 - 2I_3 = 10$ -----(1M) 2(b) $3I_1 - 2I_2 + 5I_3 = 5$ -----(1M) Solving the above equations to find I_1 , I_2 , I_3 $I_1 = 3.29A$ -----(1M) $I_2 = -1.03A$ -----(1M) $I_3 = -1.39A$ -----(1M) Statement of Reciprocity theorem -----(3M) 3(a) Verification of Reciprocity theorem using suitable example -----(4M) Equations of two port network representing transmission parameters -----(1M) Relevant circuit diagrams/method used for solving A,B,C & D parameters ----(2M) **3(b)** Finding parameters $A=2.5, B=4\Omega, C=1S \& D=2$ -----(4M) Finding Thevenin resistance $R_{th} = 9\Omega$ (with suitable circuit diagram) ------(2M) 4(a) Finding Thevenin voltage $V_{th} = 22V$ (with suitable circuit diagram) ------(3M) Maximum power transfer $P_{max} = V_{th}^2/(4 R_{th}) = 13.44W$ ------(2M) Finding Thevenin resistance $R_{th} = 4\Omega$ (with suitable circuit diagram) ------(1M) Finding Thevenin voltage $V_{th} = 30V$ (with suitable circuit diagram) ------(2M) Thevenin equivalent circuit -----(2M) 4(b) Current through $R_L=6\Omega$ is 3A -----(1M) Current through $R_L=36\Omega$ is 3/4A or 0.75A -----(1M) Power factor definition -----(2M) Importance of Power factor -----(2M) 5(a) Derivation of power factor expression for RL/RC/RLC circuit -----(3M) Circuit diagram -----(1M) Admittance calculation Y = 0.015-j 0.023 \heartsuit or $0.028 \angle -56.31$ \circlearrowright ------(3M) 5(b) Current (I) = 1.54-j2.31 A or $2.77 \angle -53.31$ A ------(3M) Circuit diagram -----(1M) Resonant frequency 6(a) $f_0 = 50.33 \text{ Hz}$ (or) $\omega_0 = 316.23 \text{ rads/sec}$ -----(2M)

Scheme of Valuation

	Quality factor (Q) = 3.16 (2M) Band width (BW) = 100 rads/sec (or) 15.9 Hz (2M)
6(b)	Circuit diagram(<i>IM</i>) Phasor diagram representing relationship between input voltage and input current(<i>2M</i>) Power factor (P.f.) = 0.55 (<i>2M</i>) Apparent power (S) = 1110 VA(<i>1M</i>) Active power (P) = 610.5 W(<i>1M</i>)
7(a)	Calculation of time constant (<i>T</i>) = 4 sec(2 <i>M</i>) Finding initial conditions for $i_0(0+) = -5A$ and $v_x(0^+) = 20V$ (2 <i>M</i>) Solutions for $v_c(t) = 60 \ e^{-0.25t} V$ (1 <i>M</i>) $v_x(t) = 20 \ e^{-0.25t} V$ (1 <i>M</i>) $i_0(t) = -5 \ e^{-0.25t} A$ (1 <i>M</i>)
7(b)	Initial condition $v(0) = 15V$ (with circuit diagram)(2M) Calculation of time constant (T) = 0.2 sec(2M) Expression for $v(t) = 15 e^{-5t} V$ (2M) Initial energy stored (W_0) = 2.25J(1M)
8(a)	Circuit diagram(<i>1M</i>) Voltage across capacitor at t=0 is 0V(<i>2M</i>) Voltage across capacitor at t= ∞ is 50V(<i>2M</i>) Calculation of time constant (<i>T</i>) = 0.05 sec(<i>2M</i>)
8(b)	Circuit diagram(<i>1M</i>) Finding initial conditions for i, $i(0) = 0A \& \frac{di(0)}{dt} = 1000 A/s$ (<i>2M</i>) Finding roots of characteristic equation, $s_{1,2} = -25 \pm j139.19$ (<i>1M</i>) Expression for $i(t) = 7.18e^{-25t} \sin (139.19t) A$ (<i>3M</i>)
9(a)	Equation of speed and different types of methods of speed control(1M) Explanation of each method with comparison between them, Armature voltage control method(2M) Armature resistance control method(2M) Field flux control method(2M)
9(b)	Operation principle of Transformer (statement only)(2M) Derivation of EMF expression (E=4.44 $\phi_m f N$)(5M)
10(a)	Constructional diagram with labelling(2M) Function of each part of DC machine (5M)
10(b)	Double field revolving theory explanation with diagrams(5M) Significance of forward and backward rotating fields in the operation of single-phase induction motors(2M)

By D Srinivas Reddy Assistant Professor EEE Department GVPCEW